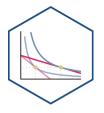
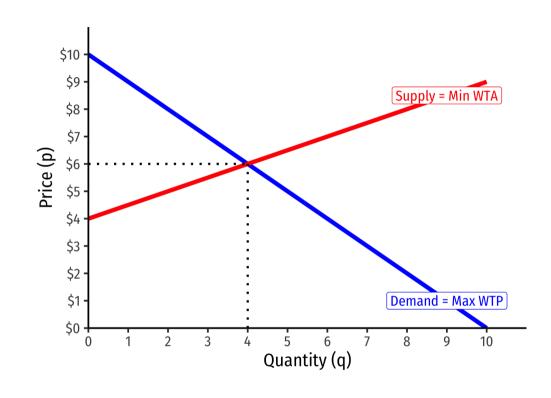

3.2 — Market Competition & Surpluses

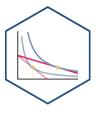
ECON 306 • Microeconomic Analysis • Spring 2022 Ryan Safner

Assistant Professor of Economics

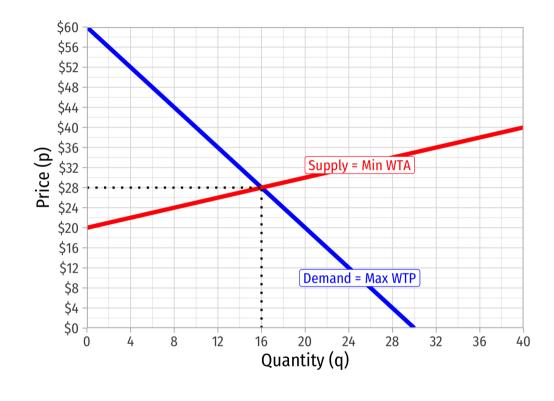

- safner@hood.edu
- ryansafner/microS22
- microS22.classes.ryansafner.com



The Algebra of Calculating Equilibrium

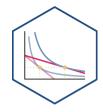

The Algebra of Calculating Equilibrium

- Simple algebra to find equilibrium prices and quantities if we know supply and demand functions
- Remember, supply and demand are each mathematical functions relating price to quantity:
 - \circ Demand: $q_D=10-p$
 - \circ Supply: $q_S=2p-8$
- ullet We know at equilibrium: $q_D=q_S$

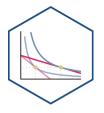

Calculating Equilibrium: Another Example

Example: Let the supply and demand functions for a market be:

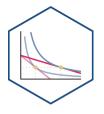
$$egin{aligned} q_D &= 30-0.5p \ q_S &= 2p-40 \end{aligned}$$


- 1. Find equilibrium quantity and price (q^{\star}, p^{\star}) .
- 2. Sketch a rough graph.

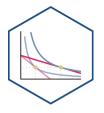
Price Competition in Markets


Price Competition in Markets I

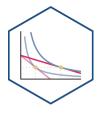
- Markets allocate resources based on individuals' reservation prices:
 - Buyers' max. willingness to pay
 - Sellers' min. willingness to accept
- Goods flow to those who value them the highest and away from those who value them the lowest


Price Competition in Markets II

- It might <u>look like it</u>, but competition in markets is **NOT** between buyers vs. sellers!
- In markets:
 - buyers compete with other buyers &
 - sellers compete with other sellers

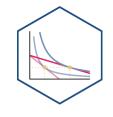

Price Competition Between Buyers

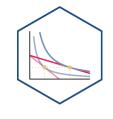
- Buyers want to pay the *lowest* price to buy a good
- But they face competition from other buyers over the same scarce goods
- Buyers attempt to raise their bids above others' reservation prices to obtain the goods



Price Competition Between Sellers

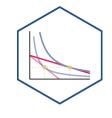
- Sellers want to get the *highest* price for a good they sell
- But they face competition from other sellers over the same potential customers
- Sellers attempt to lower their asking prices below others' reservation prices to sell their goods



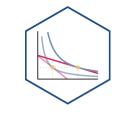

- Imagine a small public horse market
- 3 people, A, B, and C each own 1 horse
- 3 people, D, E, and F each are potentially interested in buying a horse

This example is based on Eugen von Bohm-Bawerk's famous example in *Capital and Interest* (1884)

Person	Reservation Price
Α	Minimum WTA: \$400
В	Minimum WTA: \$500
C	Minimum WTA: \$600
D	Maximum WTP: \$600
E	Maximum WTP: \$500
F	Maximum WTP: \$400

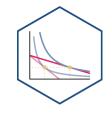


- Imagine a small public horse market
- 3 people, A, B, and C each own 1 horse
- 3 people, D, E, and F each are potentially interested in buying a horse

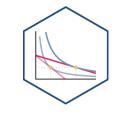

Person	Reservation Price
Α	Minimum WTA: \$400
В	Minimum WTA: \$500
С	Minimum WTA: \$600
D	Maximum WTP: \$600
E	Maximum WTP: \$500
F	Maximum WTP: \$400

- Suppose Buyer F announces she will pay
 \$400 for a horse
- Only Seller A is willing to sell at \$400
- Buyers D, E, and F are willing to buy at \$400
 - D and E are willing to pay more than F to obtain the 1 horse
 - A shortage: 3 buyers for 1 seller!
 - They raise their bids above \$400 to attract sellers

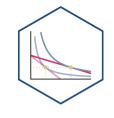
Person	Reservation Price
Α	Minimum WTA: \$400
В	Minimum WTA: \$500
С	Minimum WTA: \$600
D	Maximum WTP: \$600
E	Maximum WTP: \$500
F	Maximum WTP: \$400


- Suppose Seller C announces he will sell his horse for \$600
- Only Buyer D is willing to buy at \$600
- Sellers A, B, and C are willing to sell at \$600
 - A and B are willing to accept *less* than
 C to sell their horses
 - A surplus: 3 sellers for 1 buyer!
 - They lower their asks below \$600 to attract buyers

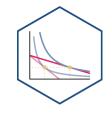
Person	Reservation Price
Α	Minimum WTA: \$400
В	Minimum WTA: \$500
C	Minimum WTA: \$600
D	Maximum WTP: \$600
E	Maximum WTP: \$500
F	Maximum WTP: \$400


- If the market price reaches \$500 (through bids and asks changing):
- Sellers A and B sell their horses for \$500 each
- Buyers D and E buy them at \$500 each

Person	Reservation Price
Α	Minimum WTA: \$400
В	Minimum WTA: \$500
С	Minimum WTA: \$600
D	Maximum WTP: \$600
E	Maximum WTP: \$500
F	Maximum WTP: \$400


- At \$500, B and E are the "marginal" buyer and seller, the "last" ones that just got off the fence to exchange in the market
 - B has WTA just low enough to sell
 - E has WTP just high enough to buy
- The marginal pair actually are the ones that "set" the market price!

Person	Reservation Price
Α	Minimum WTA: \$400
В	Minimum WTA: \$500
C	Minimum WTA: \$600
D	Maximum WTP: \$600
E	Maximum WTP: \$500
F	Maximum WTP: \$400

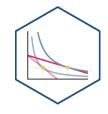


- Notice the most possible exchanges take place at a market price of \$500
 - 2 horses get exchanged
- Any price above or below \$500, only 1 horse would get exchanged
 - Also, at least one other buyer or seller would raise/lower their bid/ask

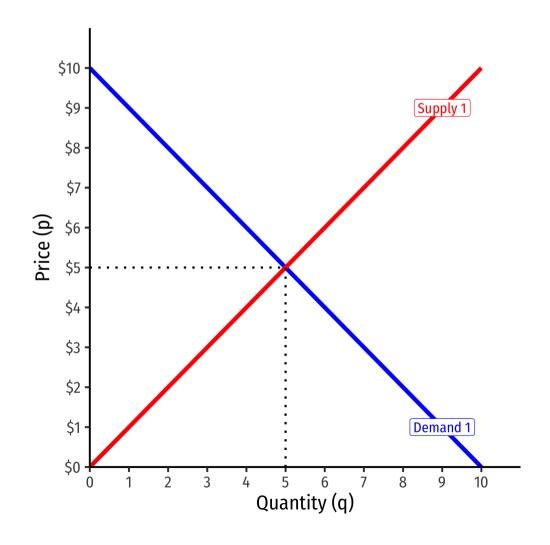
Person	Reservation Price
Α	Minimum WTA: \$400
В	Minimum WTA: \$500
С	Minimum WTA: \$600
D	Maximum WTP: \$600
E	Maximum WTP: \$500
F	Maximum WTP: \$400



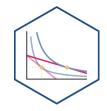
- At \$500, C and F are the "excluded" buyers and sellers
 - C has WTA too high to sell
 - F has WTP *too low* to buy


Person	Reservation Price
Α	Minimum WTA: \$400
В	Minimum WTA: \$500
C	Minimum WTA: \$600
D	Maximum WTP: \$600
E	Maximum WTP: \$500
F	Maximum WTP: \$400

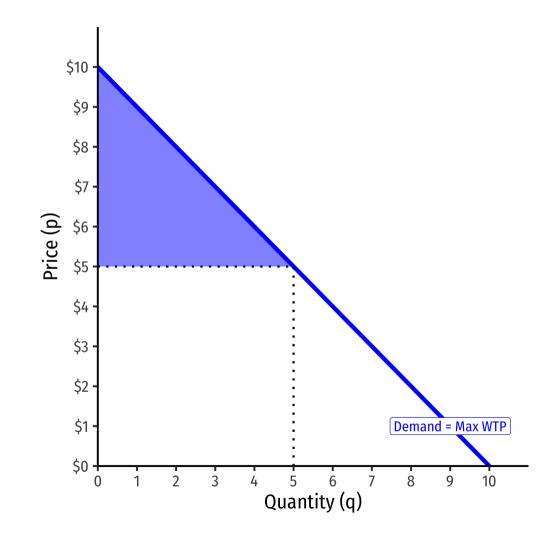
- At \$500, A and D are the "inframarginal" buyers and sellers
 - A has WTA *lower* than market price, earns extra \$100 surplus from exchange
 - D has WTP *higher* than market price, earns extra \$100 surplus from exchange
- These buyers and sellers benefit the most from exchange



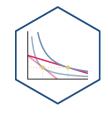
Economic Surplus


Market-Clearing Prices

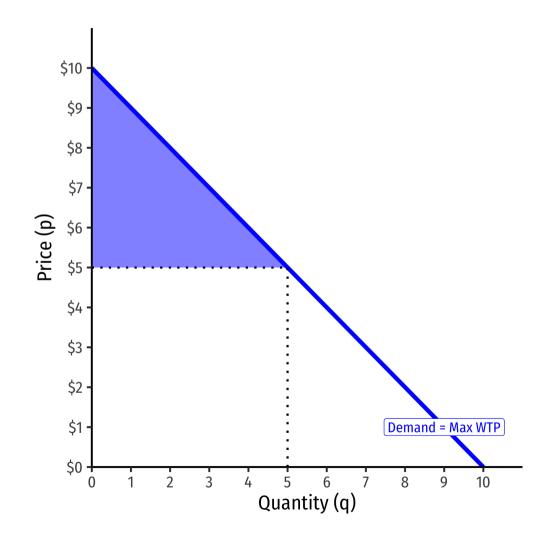
 Supply and demand set the marketclearing price for all units exchanged (bought and sold)

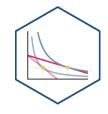


Consumer Surplus I

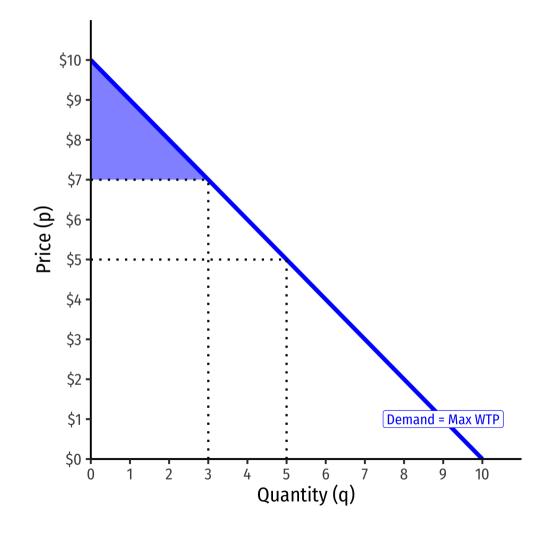


- Demand function measures how much you would hypothetically be willing to pay for various quantities
 - "reservation price"
- You often actually pay (the market-clearing price, p^{st}) a lot less than your reservation price
- The difference is **consumer surplus**


$$CS = WTP - p^*$$


Consumer Surplus II

$$CS = rac{1}{2}bh$$
 $CS = rac{1}{2}(5-0)(\$10-\$5)$ $CS = \$12.50$

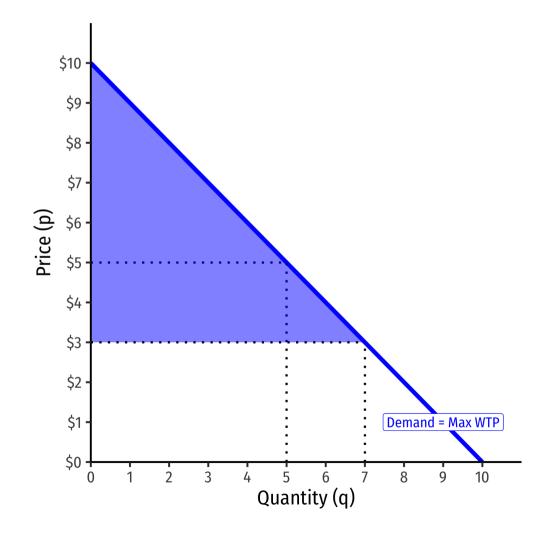


Consumer Surplus III

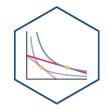


 An increase in market price reduces consumer surplus

$$CS' = rac{1}{2}bh$$
 $CS' = rac{1}{2}(3-0)(\$10-\$7)$ $CS' = \$4.50$

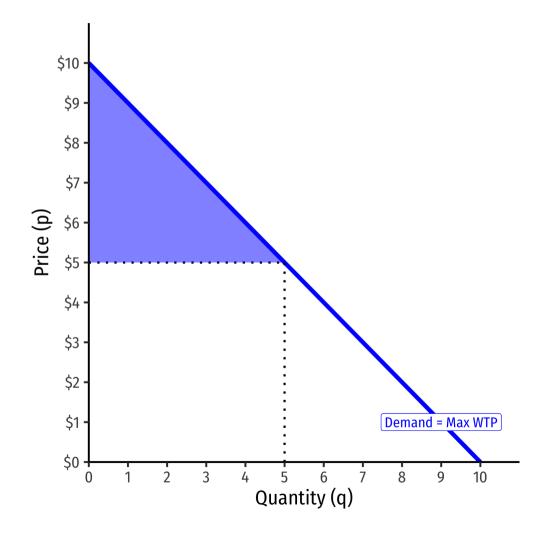


Consumer Surplus IV

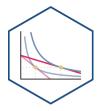


 An decrease in market price increases consumer surplus

$$CS' = rac{1}{2}bh$$
 $CS' = rac{1}{2}(7-0)(\$10-\$3)$ $CS' = \$24.50$



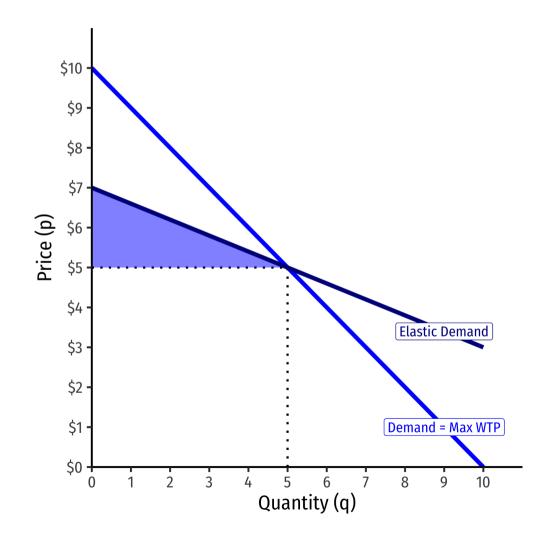
Consumer Surplus V



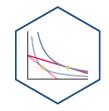
 A relatively inelastic demand curve generates more consumer surplus

$$CS = rac{1}{2}(5-0)(\$10 - \$5)$$
 $CS = \$12.50$

Consumer Surplus V

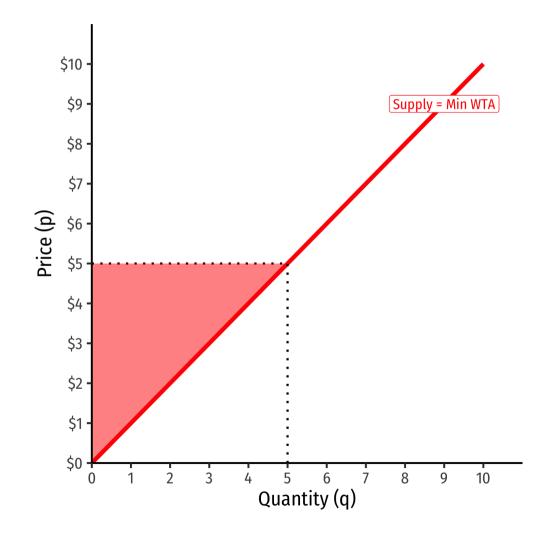


 A relatively inelastic demand curve generates more consumer surplus

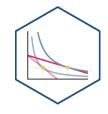

$$CS = rac{1}{2}(5-0)(\$10 - \$5)$$
 $CS = \$12.50$

 A relatively elastic demand curve generates less consumer surplus

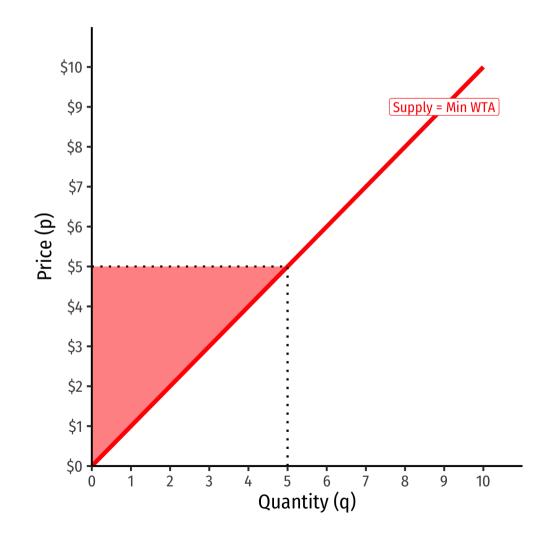
$$CS = rac{1}{2}(5-0)(\$7 - \$5)$$
 $CS = \$5.00$

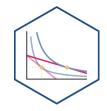


Producer Surplus I

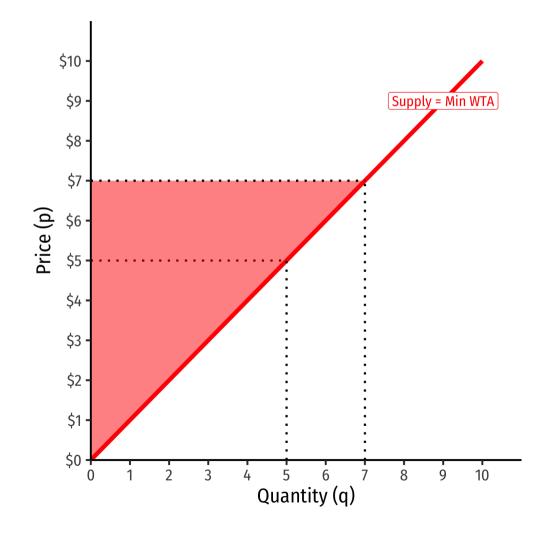


- Supply function measures how much you would hypothetically be willing to accept to sell various quantities
 - "reservation price"
- ullet You often *actually* receive (the market-clearing price, p^st) a lot more than your reservation price
- The difference is **producer surplus**

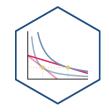

$$PS = p^* - WTA$$


Producer Surplus II

$$PS = rac{1}{2}bh$$
 $PS = rac{1}{2}(5-0)(\$5-\$0)$ $PS = \$12.50$

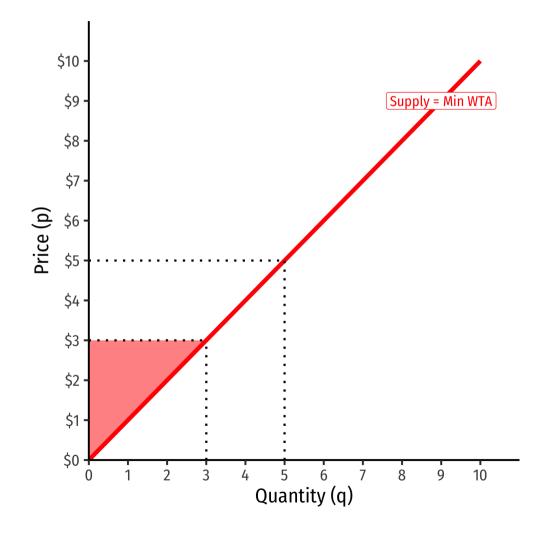


Producer Surplus III

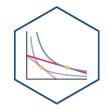


An increase in market price increases producer surplus

$$PS' = rac{1}{2}bh$$
 $PS' = rac{1}{2}(7-0)(\$7-\$0)$ $PS' = \$24.50$

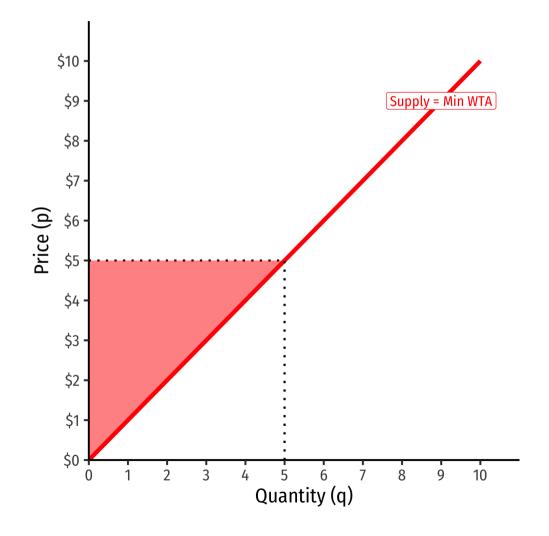


Producer Surplus IV

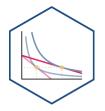


 An decrease in market price decreases producer surplus

$$PS' = rac{1}{2}bh$$
 $PS' = rac{1}{2}(3-0)(\$3-\$0)$ $PS' = \$4.50$



Producer Surplus V

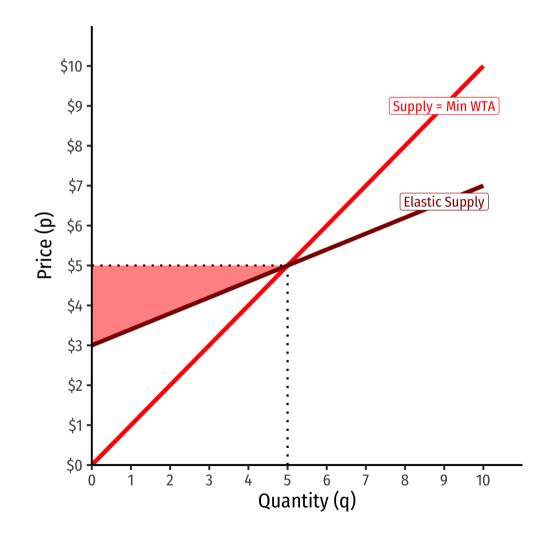


 A relatively inelastic supply curve generates more producer surplus

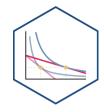
$$PS = rac{1}{2}(5-0)(\$5-\$0)$$

 $PS = \$12.50$

Producer Surplus V

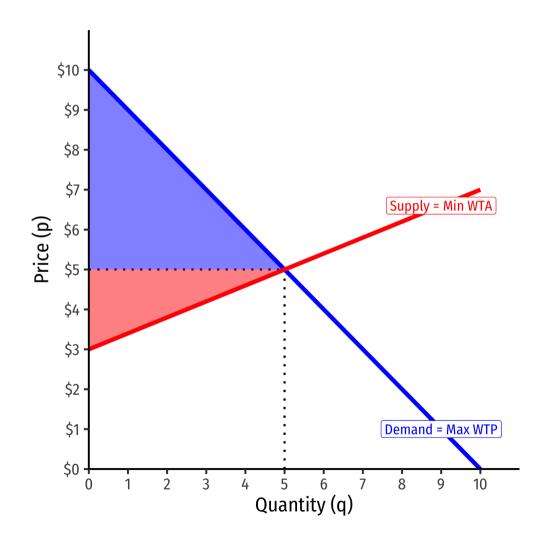


 A relatively inelastic supply curve generates more producer surplus

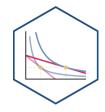

$$PS = rac{1}{2}(5-0)(\$5-\$0)$$

 $PS = \$12.50$

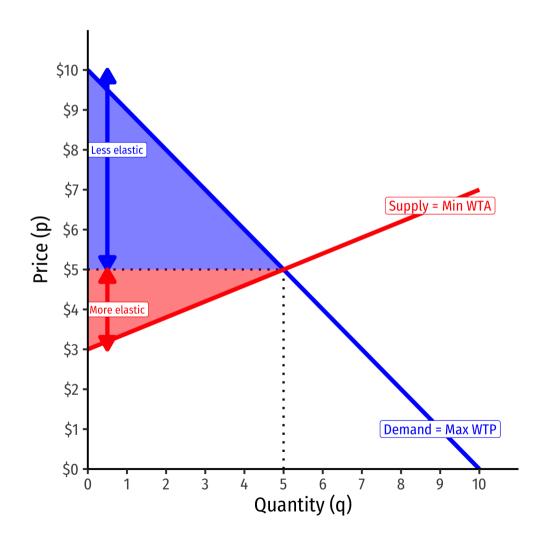
A relatively elastic supply curve generates less producer surplus


$$PS = \frac{1}{2}(5-0)(\$5-\$3)$$

 $PS = \$5.00$


Elasticities and Surpluses I

- The more elastic curve at p^{*} generates less surplus
 - More options, easier to change choices, less benefit from any one particular exchange
- The less elastic curve at p^{*} generates ${f more}$ surplus
 - Fewer options, harder to change choices, more benefit from any one particular exchange
- This is important for policies such as price controls, taxes, etc.



Elasticities and Surpluses II

- A good visual rule of thumb:
- ullet Compare distance between choke price and p^* for each curve
- Bigger distance

 — less elastic in equilibrium (and vice versa)
 - $\circ \implies \mathsf{more} \ \mathsf{surplus}$

Example

Example: Using last class's supply and demand functions:

$$q_D=10-p \ q_S=2p-8$$

- 1. Calculate the price elasticity of demand and the price elasticity of supply in equilibrium.
- 2. Calculate the consumer surplus and producer surplus. Shade each on the graph.
- 3. Who gets more surplus, consumers or producers, and why?