3.2 - Market Competition \& Surpluses

 ECON 306 • Microeconomic Analysis • Spring 2022 Ryan SafnerAssistant Professor of Economics
ش safner@hood.edu
© ryansafner/microS22
© micros22.classes.ryansafner.com

The Algebra of Calculating Equilibrium

The Algebra of Calculating Equilibrium

- Simple algebra to find equilibrium prices and quantities if we know supply and demand functions
- Remember, supply and demand are each mathematical functions relating price to quantity:
- Demand: $q_{D}=10-p$
- Supply: $q_{S}=2 p-8$
- We know at equilibrium: $q_{D}=q_{S}$

Calculating Equilibrium: Another Example

Example: Let the supply and demand functions for a market be:

$$
\begin{aligned}
q_{D} & =30-0.5 p \\
q_{S} & =2 p-40
\end{aligned}
$$

1. Find equilibrium quantity and price
 $\left(q^{\star}, p^{\star}\right)$.
2. Sketch a rough graph.

Price Competition in Markets

Price Competition in Markets I

- Markets allocate resources based on individuals' reservation prices:
- Buyers' max. willingness to pay
- Sellers' min. willingness to accept
- Goods flow to those who value them the highest and away from those who value
 them the lowest

Price Competition in Markets II

- It might look like it, but competition in markets is NOT between buyers vs. sellers!
- In markets:
- buyers compete with other buyers \&
- sellers compete with other sellers

Price Competition Between Buyers

- Buyers want to pay the lowest price to buy a good
- But they face competition from other buyers over the same scarce goods
- Buyers attempt to raise their bids above goods

others' reservation prices to obtain the

Price Competition Between Sellers

- Sellers want to get the highest price for a good they sell
- But they face competition from other sellers over the same potential customers

- Sellers attempt to lower their asking prices below others' reservation prices to sell their goods

An Example

- Imagine a small public horse market
- 3 people, A, B, and C each own 1 horse
- 3 people, D, E, and F each are potentially interested in buying a horse

An Example

Person
Reservation Price
A
Minimum WTA: $\$ 400$
C
Minimum WTA: $\$ 500$
D
Minimum WTA: $\mathbf{\$ 6 0 0}$
Maximum WTP: $\$ 600$
F

- Imagine a small public horse market
- 3 people, A, B, and C each own 1 horse
- 3 people, D, E, and F each are potentially interested in buying a horse

An Example

Person
Reservation Price
B
Minimum WTA: $\$ 400$
C
Minimum WTA: $\$ 500$
E
Maximum WTA: $\$ 600$
M

Price: \$400

- Suppose Buyer F announces she will pay \$400 for a horse
- Only Seller A is willing to sell at $\$ 400$
- Buyers D, E, and F are willing to buy at $\$ 400$
- D and E are willing to pay more than F to obtain the 1 horse
- A shortage: 3 buyers for 1 seller!
- They raise their bids above $\$ 400$ to attract sellers

An Example

Person	Reservation Price
A	Minimum WTA: $\$ 400$
B	Minimum WTA: $\$ 500$
C	Minimum WTA: $\$ 600$
D	Maximum WTP: $\$ 600$
E	Maximum WTP: $\$ 500$
F	Maximum WTP: $\$ 400$

Price: $\$ 600$

- Suppose Seller C announces he will sell his horse for $\$ 600$
- Only Buyer D is willing to buy at $\$ 600$
- Sellers A, B, and C are willing to sell at \$600
- A and B are willing to accept less than C to sell their horses
- A surplus: 3 sellers for 1 buyer!
- They lower their asks below $\$ 600$ to attract buyers

An Example

Person
Reservation Price
A
Minimum WTA: $\$ 400$
C
Minimum WTA: $\$ 500$
D
Minimum WTA: $\$ 600$
E
Maximum WTP: $\$ 600$
Maximum WTP: $\$ 500$

Price: \$500

- If the market price reaches $\$ 500$ (through bids and asks changing):
- Sellers A and B sell their horses for $\$ 500$ each
- Buyers D and E buy them at $\$ 500$ each

An Example

Person
Reservation Price
A
Minimum WTA: \$400
C
Minimum WTA: $\$ 500$
D
Minimum WTA: $\$ 600$
E
Maximum WTP: $\$ 600$
Maximum WTP: \$500

Price: \$500

- At $\$ 500, \mathrm{~B}$ and E are the "marginal" buyer and seller, the "last" ones that just got off the fence to exchange in the market
- B has WTA just low enough to sell
- E has WTP just high enough to buy
- The marginal pair actually are the ones that "set" the market price!

An Example

Person	Reservation Price
A	Minimum WTA: $\$ 400$
B	Minimum WTA: $\$ 500$
C	Minimum WTA: $\$ 600$
D	Maximum WTP: $\$ 600$
E	Maximum WTP: $\$ 500$
F	Maximum WTP: $\$ 400$

Price: \$500

- Notice the most possible exchanges take place at a market price of $\$ 500$
- 2 horses get exchanged
- Any price above or below $\$ 500$, only 1 horse would get exchanged
- Also, at least one other buyer or seller would raise/lower their bid/ask

An Example

Person
Reservation Price
A
Minimum WTA: \$400
C
Minimum WTA: $\$ 500$
D
Minimum WTA: $\$ 600$
E
Maximum WTP: $\$ 600$
Maximum WTP: $\$ 500$

Price: \$500

- At $\$ 500, C$ and F are the "excluded" buyers and sellers
- C has WTA too high to sell
- F has WTP too low to buy

An Example

Person	Reservation Price
A	Minimum WTA: $\$ 400$
B	Minimum WTA: $\$ 500$
C	Minimum WTA: $\$ 600$
D	Maximum WTP: $\$ 600$
E	Maximum WTP: $\$ 500$
F	Maximum WTP: $\$ 400$

Price: $\mathbf{\$ 5 0 0}$

- At $\$ 500, A$ and D are the "inframarginal" buyers and sellers
- A has WTA lower than market price, earns extra $\$ 100$ surplus from exchange
- D has WTP higher than market price, earns extra $\$ 100$ surplus from exchange
- These buyers and sellers benefit the most from exchange

Economic Surplus

Market-Clearing Prices

- Supply and demand set the marketclearing price for all units exchanged (bought and sold)

Consumer Surplus I

- Demand function measures how much you would hypothetically be willing to pay for various quantities
- "reservation price"
- You often actually pay (the marketclearing price, p^{*}) a lot less than your reservation price
- The difference is consumer surplus

$$
C S=W T P-p^{*}
$$

Consumer Surplus II

$$
\begin{aligned}
& C S=\frac{1}{2} b h \\
& C S=\frac{1}{2}(5-0)(\$ 10-\$ 5) \\
& C S=\$ 12.50
\end{aligned}
$$

Consumer Surplus III

- An increase in market price reduces consumer surplus

$$
\begin{aligned}
& C S^{\prime}=\frac{1}{2} b h \\
& C S^{\prime}=\frac{1}{2}(3-0)(\$ 10-\$ 7) \\
& C S^{\prime}=\$ 4.50
\end{aligned}
$$

Consumer Surplus IV

- An decrease in market price increases consumer surplus

$$
\begin{aligned}
C S^{\prime} & =\frac{1}{2} b h \\
C S^{\prime} & =\frac{1}{2}(7-0)(\$ 10-\$ 3) \\
C S^{\prime} & =\$ 24.50
\end{aligned}
$$

Consumer Surplus V

- A relatively inelastic demand curve generates more consumer surplus

$$
\begin{aligned}
& C S=\frac{1}{2}(5-0)(\$ 10-\$ 5) \\
& C S=\$ 12.50
\end{aligned}
$$

Consumer Surplus V

- A relatively inelastic demand curve generates more consumer surplus

$$
\begin{aligned}
& C S=\frac{1}{2}(5-0)(\$ 10-\$ 5) \\
& C S=\$ 12.50
\end{aligned}
$$

- A relatively elastic demand curve generates less consumer surplus

$$
\begin{aligned}
& C S=\frac{1}{2}(5-0)(\$ 7-\$ 5) \\
& C S=\$ 5.00
\end{aligned}
$$

Producer Surplus I

- Supply function measures how much you would hypothetically be willing to accept to sell various quantities
- "reservation price"
- You often actually receive (the marketclearing price, p^{*}) a lot more than your reservation price
- The difference is producer surplus

$$
P S=p^{*}-W T A
$$

Producer Surplus II

$$
\begin{aligned}
P S & =\frac{1}{2} b h \\
P S & =\frac{1}{2}(5-0)(\$ 5-\$ 0) \\
P S & =\$ 12.50
\end{aligned}
$$

Producer Surplus III

- An increase in market price increases producer surplus

$$
\begin{aligned}
P S^{\prime} & =\frac{1}{2} b h \\
P S^{\prime} & =\frac{1}{2}(7-0)(\$ 7-\$ 0) \\
P S^{\prime} & =\$ 24.50
\end{aligned}
$$

Producer Surplus IV

- An decrease in market price decreases producer surplus

$$
\begin{aligned}
P S^{\prime} & =\frac{1}{2} b h \\
P S^{\prime} & =\frac{1}{2}(3-0)(\$ 3-\$ 0) \\
P S^{\prime} & =\$ 4.50
\end{aligned}
$$

Producer Surplus V

- A relatively inelastic supply curve generates more producer surplus

$$
\begin{aligned}
P S & =\frac{1}{2}(5-0)(\$ 5-\$ 0) \\
P S & =\$ 12.50
\end{aligned}
$$

Producer Surplus V

- A relatively inelastic supply curve generates more producer surplus

$$
\begin{aligned}
P S & =\frac{1}{2}(5-0)(\$ 5-\$ 0) \\
P S & =\$ 12.50
\end{aligned}
$$

- A relatively elastic supply curve generates less producer surplus

$$
\begin{aligned}
P S & =\frac{1}{2}(5-0)(\$ 5-\$ 3) \\
P S & =\$ 5.00
\end{aligned}
$$

Elasticities and Surpluses I

- The more elastic curve at p^{*} generates less surplus
- More options, easier to change choices, less benefit from any one particular exchange
- The less elastic curve at p^{*} generates more surplus
- Fewer options, harder to change choices, more benefit from any one particular exchange
- This is important for policies such as price controls, taxes, etc.

Elasticities and Surpluses II

- A good visual rule of thumb:
- Compare distance between choke price and p^{*} for each curve
- Bigger distance \Longrightarrow less elastic in equilibrium (and vice versa)
- \qquad more surplus

Example

Example: Using last class's supply and demand functions:

$$
\begin{aligned}
q_{D} & =10-p \\
q_{S} & =2 p-8
\end{aligned}
$$

1. Calculate the price elasticity of demand and the price elasticity of supply in equilibrium.
2. Calculate the consumer surplus and producer surplus. Shade each on the graph.
3. Who gets more surplus, consumers or producers, and why?
