2.5 — Short Run Profit Maximization ECON 306 • Microeconomic Analysis • Spring 2022 Ryan Safner Assistant Professor of Economics

- ✓ <u>safner@hood.edu</u>
- <u>ryansafner/microS22</u>
- microS22.classes.ryansafner.com

Outline

Revenues

<u>Profits</u>

Comparative Statics

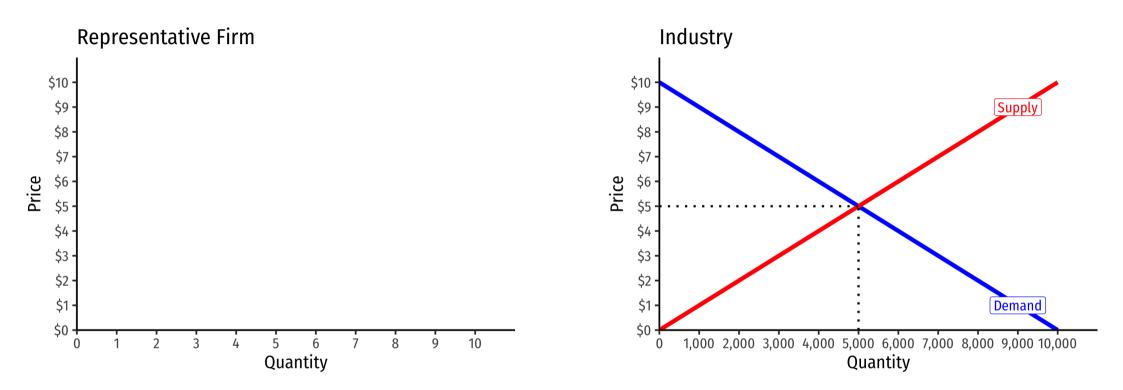
Calculating Profit

Short-Run Shut-Down Decisions

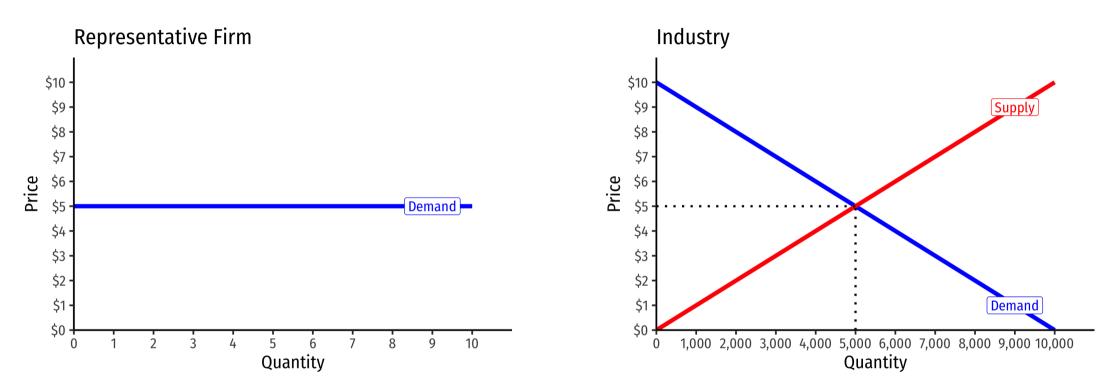
The Firm's Short-Run Supply Decision

Revenues

Revenues for Firms in *Competitive* **Industries I**

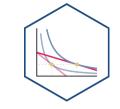


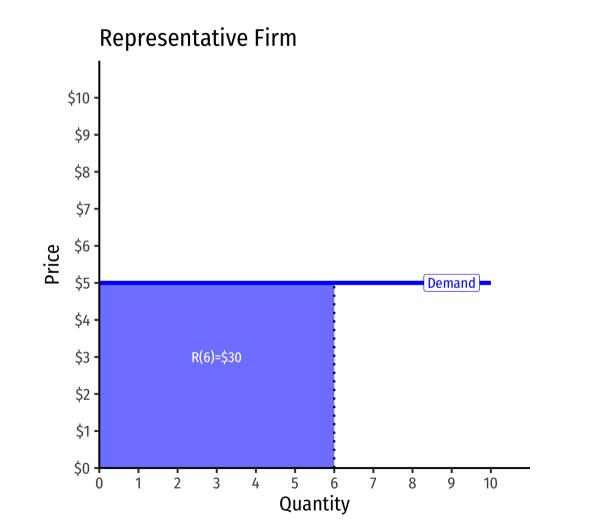
Revenues for Firms in *Competitive* **Industries I**



- Demand for a firm's product is **perfectly elastic** at the market price
- Where did the supply curve come from? You'll know today

Revenues for Firms in *Competitive* **Industries II**





• Total Revenue
$$R(q) = pq$$

Average and Marginal Revenues

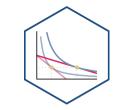
• Average Revenue: revenue per unit of output

$$AR(q) = rac{R}{q}$$

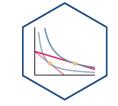
- $\circ \; AR(q)$ is **by definition** equal to the price! (Why?)
- Marginal Revenue: change in revenues for each additional unit of output sold:

$$MR(q) = rac{\Delta R(q)}{\Delta q} pprox rac{R_2 - R_1}{q_2 - q_1}$$

- $\circ~$ Calculus: first derivative of the revenues function
- For a *competitive* firm (only), MR(q) = p, i.e. the price!



Average and Marginal Revenues: Example



Example: A firm sells bushels of wheat in a very competitive market. The current market price is \$10/bushel.

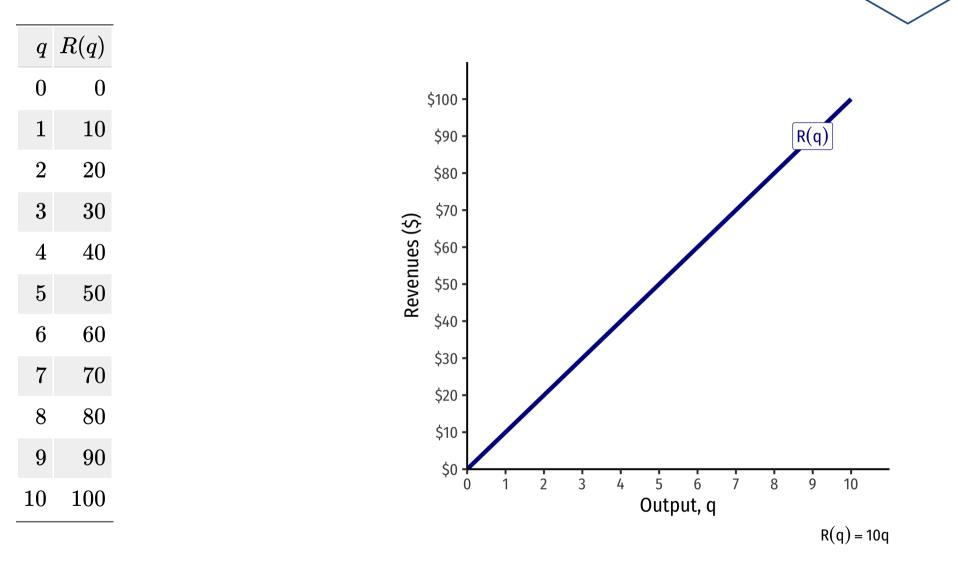
For the 1st bushel sold:

- What is the total revenue?
- What is the average revenue?

For the 2nd bushel sold:

- What is the total revenue?
- What is the average revenue?
- What is the marginal revenue?

Total Revenue, Example: Visualized

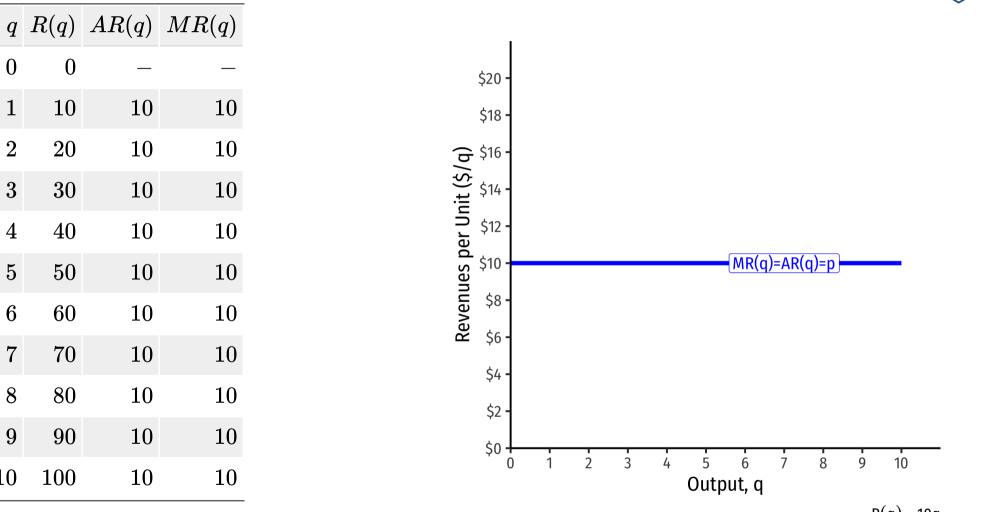


Average and Marginal Revenue, Example: Visualized

 $\mathbf{2}$

 $\mathbf{5}$

 $\overline{7}$



R(q) = 10q

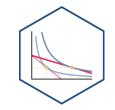
Profits

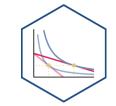
Recall: The Firm's Two Problems

1st Stage: firm's profit maximization problem:

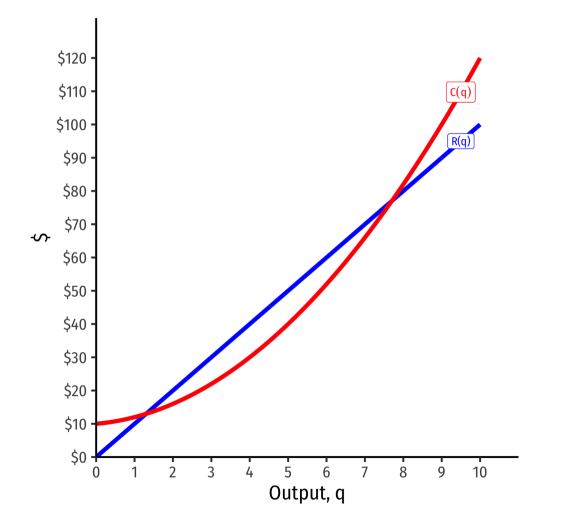
1. Choose: < output >

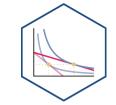
- 2. In order to maximize: < profits >
- 2nd Stage: firm's cost minimization problem:
 - 1. Choose: < inputs >
 - 2. In order to *minimize*: < cost >
 - 3. Subject to: < producing the optimal output >
 - Minimizing costs \iff maximizing profits



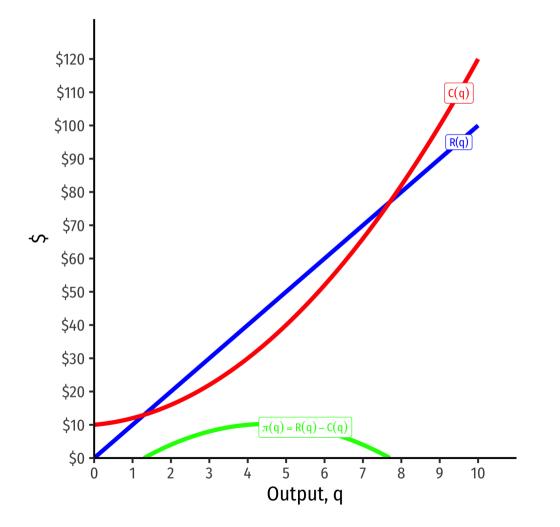


• $\pi(q) = \mathbf{R}(q) - \mathbf{C}(q)$

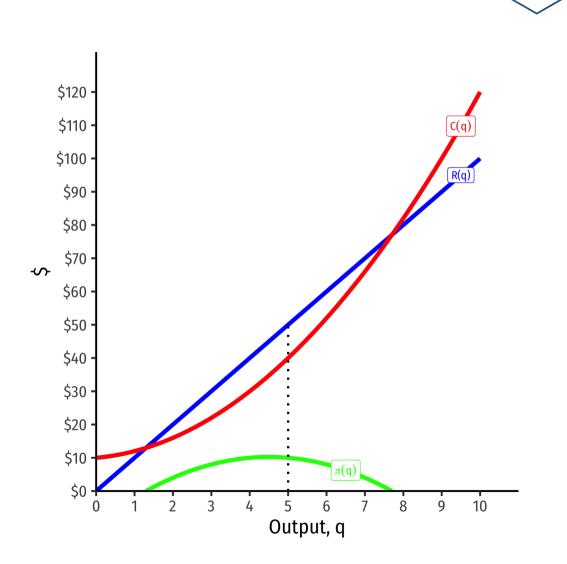




• $\pi(q) = \mathbf{R}(q) - \mathbf{C}(q)$



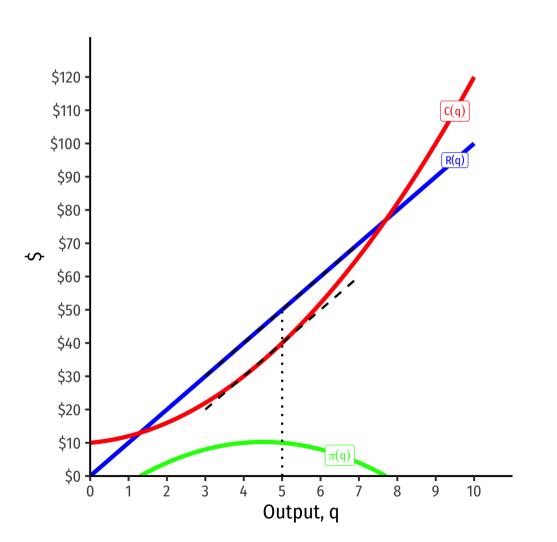
• Graph: find q^* to max $\pi \implies q^*$ where max distance between R(q) and C(q)

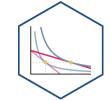


•
$$\pi(q) = R(q) - C(q)$$

- Graph: find q^* to max $\pi \implies q^*$ where max distance between R(q) and C(q)
- Slopes must be equal:

MR(q) = MC(q)



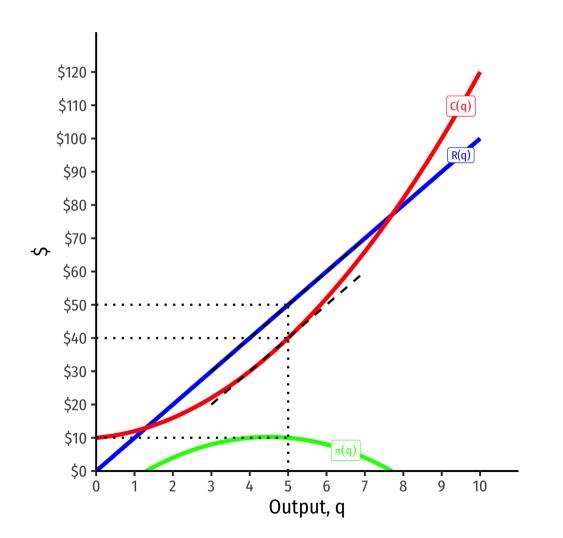


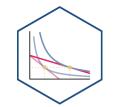
•
$$\pi(q) = \mathbf{R}(q) - \mathbf{C}(q)$$

- Graph: find q^* to max $\pi \implies q^*$ where max distance between R(q) and C(q)
- Slopes must be equal:

MR(q) = MC(q)

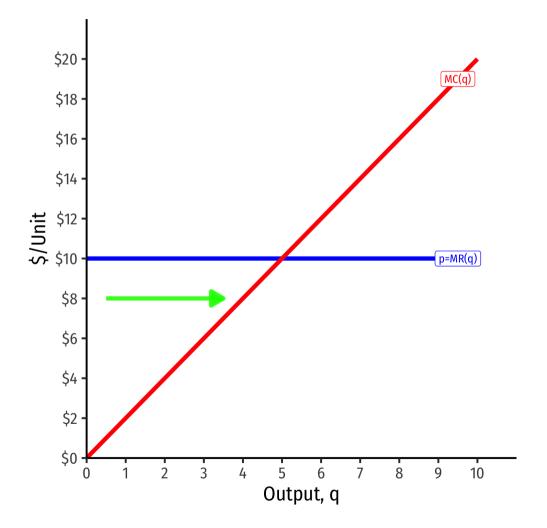
• At $q^* = 5$: $\circ \ R(q) = 50$ $\circ \ C(q) = 40$ $\circ \ \pi(q) = 10$





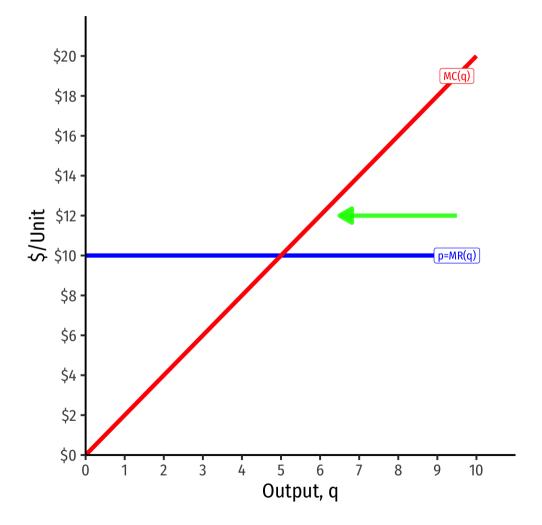
Visualizing Profit Per Unit As MR(q) and MC(q)

• At low output $q < q^*$, can increase π by producing *more*: MR(q) > MC(q)



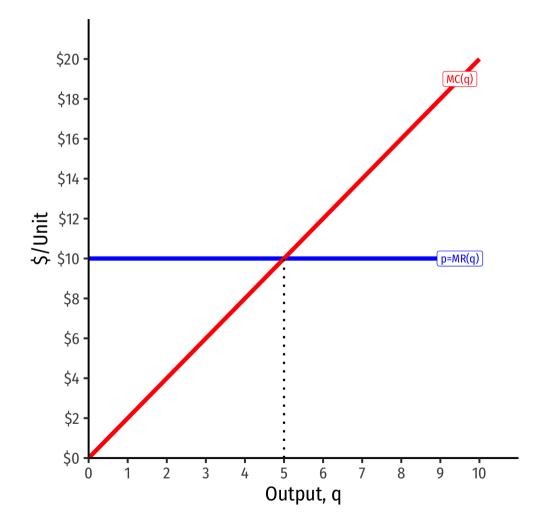
Visualizing Profit Per Unit As MR(q) and MC(q)

• At high output $q > q^*$, can increase π by producing *less*: MR(q) < MC(q)



Visualizing Profit Per Unit As MR(q) and MC(q)

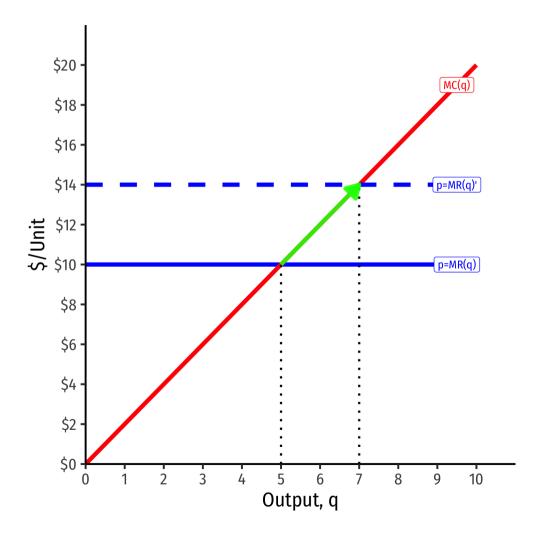
• π is *maximized* where MR(q) = MC(q)



Comparative Statics

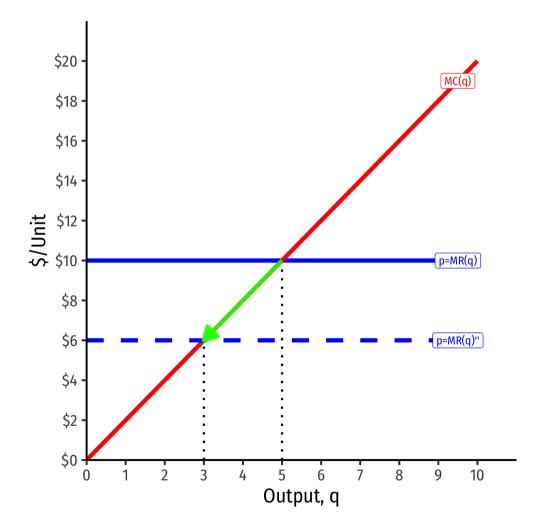
If Market Price Changes I

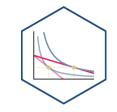
- Suppose the market price **increases**
- Firm (always setting MR=MC) will respond by producing more



If Market Price Changes II

• Firm (always setting MR=MC) will respond by **producing less**





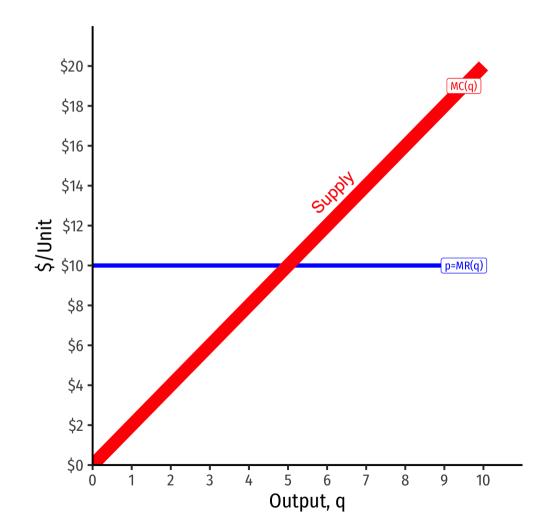
The Firm's Supply Curve

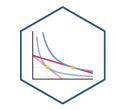
• The firm's marginal cost curve is its supply curve[‡]

p = MC(q)

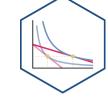
- How it will supply the optimal amount of output in response to the market price
- Firm always sets its price equal to its marginal cost

[‡] Mostly...there is an important **exception** we will see shortly!



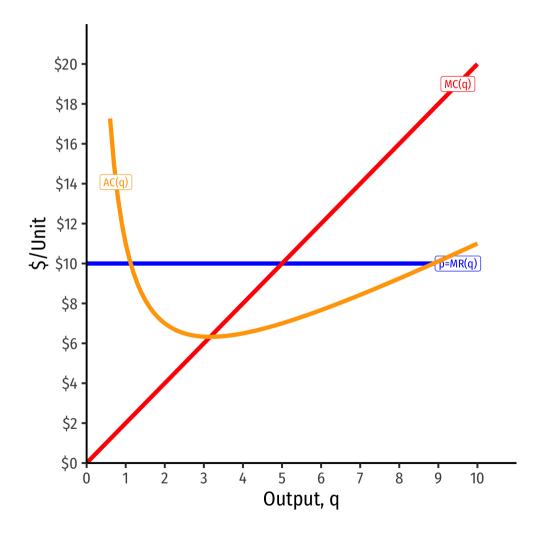


Calculating Profit



• Profit is

$$\pi(q) = R(q) - C(q)$$



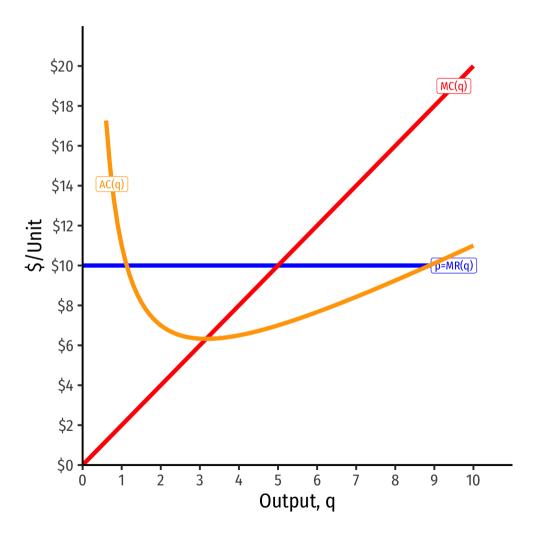
• Profit is

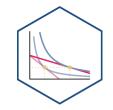
$$\pi(q) = R(q) - C(q)$$

• Profit per unit can be calculated as:

$$rac{\pi(q)}{q} = AR(q) - AC(q)$$

= $p - AC(q)$





• Profit is

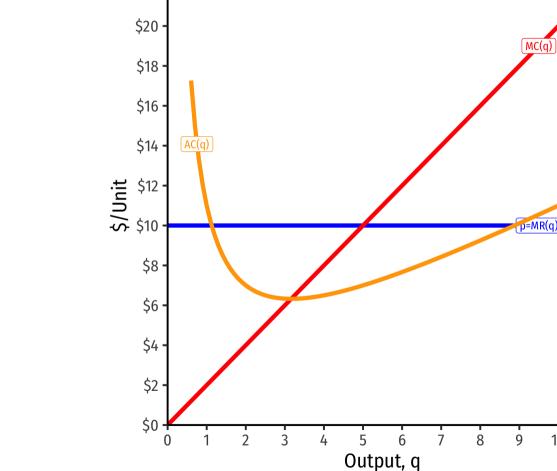
$$\pi(q) = R(q) - C(q)$$

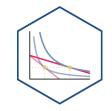
• Profit per unit can be calculated as:

$$\frac{\pi(q)}{q} = AR(q) - AC(q)$$
$$= p - AC(q)$$

• Multiply by q to get total profit:

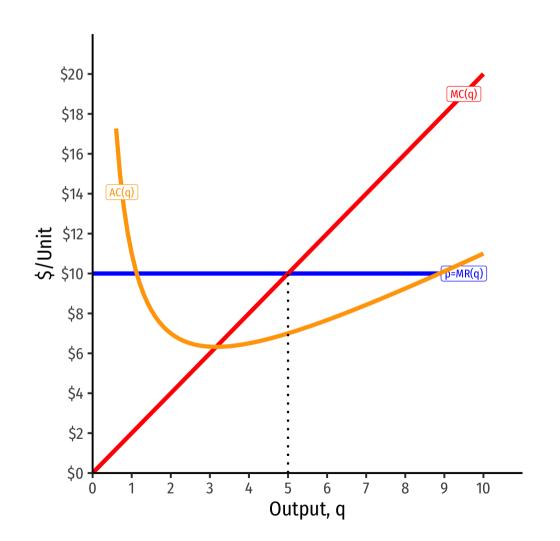
 $\pi(q) = q \left[\mathbf{p} - AC(q) \right]$

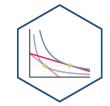




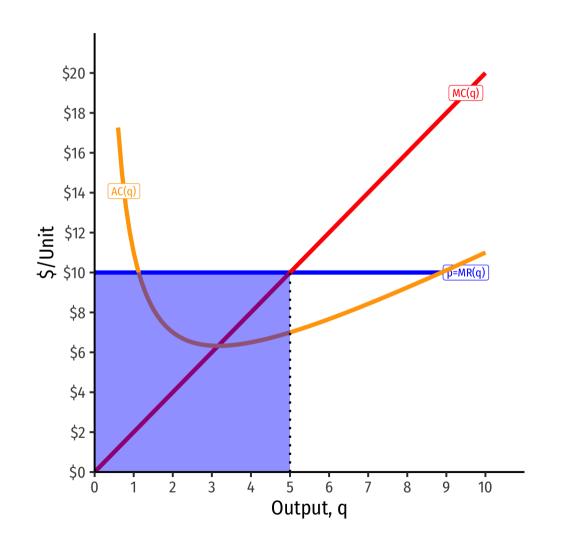
10

- At market price of p* = \$10
- At q* = 5 (per unit):
- At q* = 5 (totals):



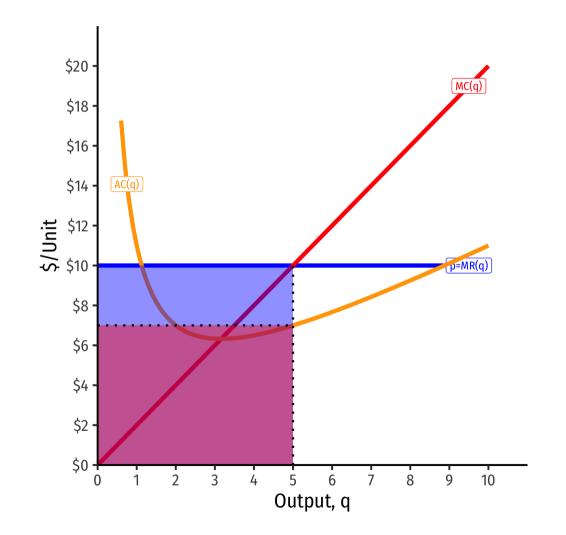


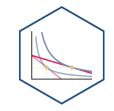
- At market price of p* = \$10
- At q* = 5 (per unit):
 - AR(5) = \$10/unit
- At q* = 5 (totals):
 - R(5) = \$50



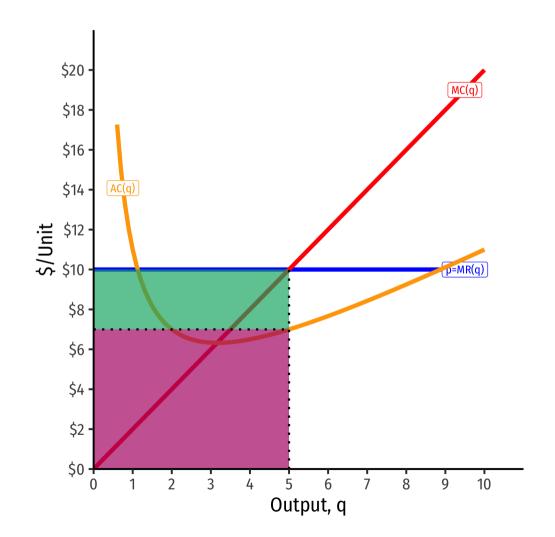


- At market price of p* = \$10
- At q* = 5 (per unit):
 - AR(5) = \$10/unit
 AC(5) = \$7/unit
- At q* = 5 (totals):
 - R(5) = \$50
 C(5) = \$35

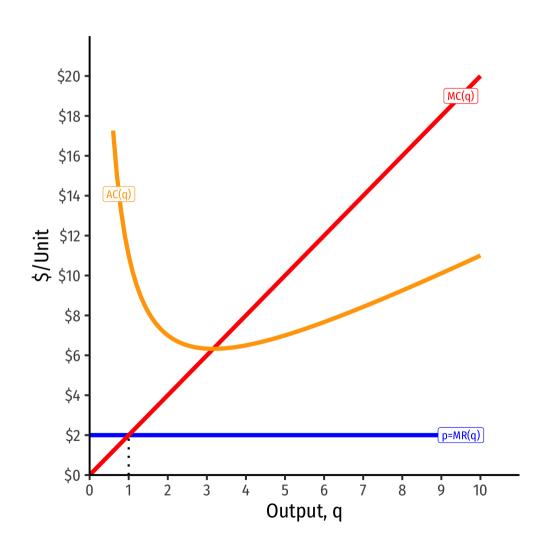


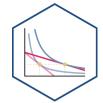


- At market price of p* = \$10
- At q* = 5 (per unit):
 - AR(5) = \$10/unit
 - AC(5) = \$7/unit
 - A π (5) = \$3/unit
- At q* = 5 (totals):
 - R(5) = \$50
 C(5) = \$35
 - **π** = \$15

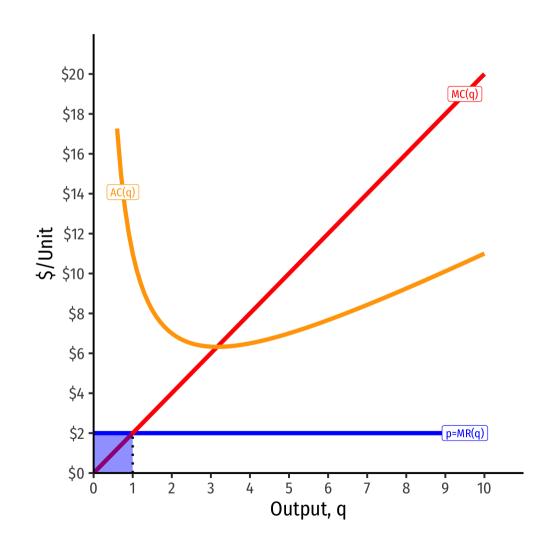


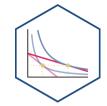
- At market price of p* = \$2
- At q* = 1 (per unit):
- At q* = 1 (totals):





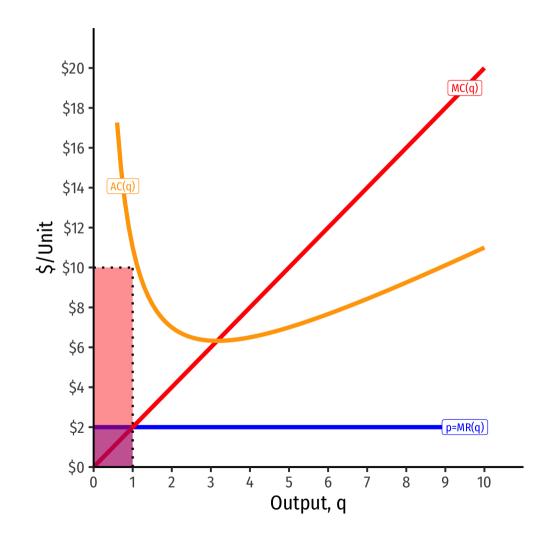
- At market price of p* = \$2
- At q* = 1 (per unit):
 - AR(1) = \$2/unit
- At q* = 1 (totals):
 - R(1) = \$2

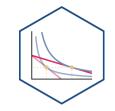




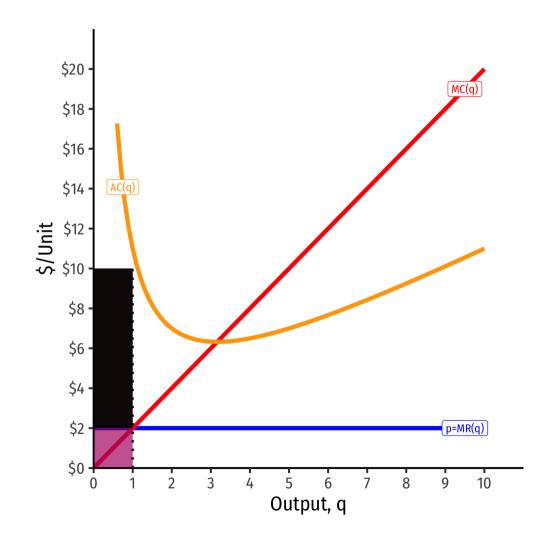
- At market price of p* = \$2
- At q* = 1 (per unit):
 - AR(1) = \$2/unit
 AC(1) = \$10/unit
- At q* = 1 (totals):

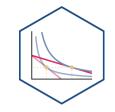
R(1) = \$2
C(1) = \$10





- At market price of p* = \$2
- At q* = 1 (per unit):
 - AR(1) = \$2/unit
 - AC(1) = \$10/unit
 - $A\pi(1) = -\$8/unit$
- At q* = 1 (totals):
 - R(1) = \$2
 - C(1) = \$10





- What if a firm's profits at q^* are **negative** (i.e. it earns **losses**)?
- Should it produce at all?

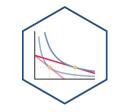
- Suppose firm chooses to produce ${\it nothing} \ (q=0):$
- If it has **fixed costs** (f > 0), its profits are:

$$\pi(q) = pq - C(q)$$

- Suppose firm chooses to produce ${\it nothing} \ (q=0):$
- If it has **fixed costs** (f > 0), its profits are:

$$\pi(q) = pq - C(q)$$

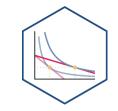
 $\pi(q) = pq - f - VC(q)$



- Suppose firm chooses to produce $\mathbf{nothing} \ (q=0)$:
- If it has **fixed costs** (f > 0), its profits are:

$$egin{aligned} \pi(q) &= pq - C(q) \ \pi(q) &= pq - f - VC(q) \ \pi(0) &= -f \end{aligned}$$

i.e. it (still) pays its fixed costs

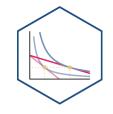


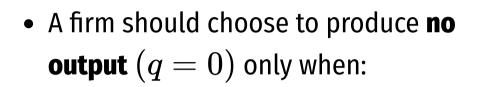
• A firm should choose to produce **no output** (q = 0) only when:

 $\pi \mbox{ from producing} < \pi \mbox{ from not producing}$

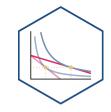
• A firm should choose to produce **no output** (q = 0) only when:

```
\pi 	ext{ from producing } < \pi 	ext{ from not producing } \pi(q) < -f
```



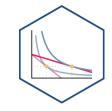


 $\pi ext{ from producing } < \pi ext{ from not producing } \ \pi(q) < -f \ pq - VC(q) - f < -f$



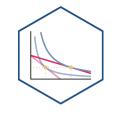
• A firm should choose to produce **no output** (q = 0) only when:

 $\pi ext{ from producing } < \pi ext{ from not producing } \ \pi(q) < -f \ pq - VC(q) - f < -f \ pq - VC(q) < 0$



• A firm should choose to produce **no output** (q = 0) only when:

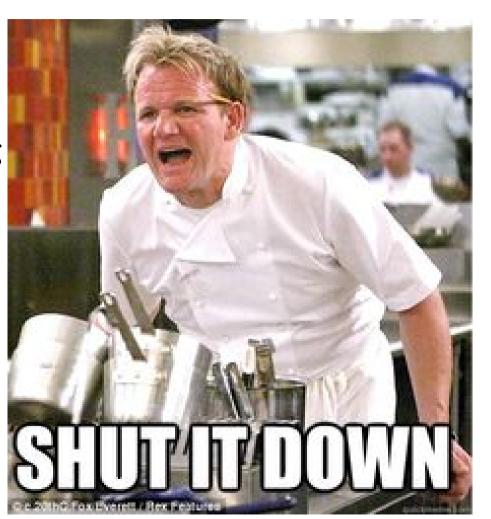
 $egin{aligned} \pi ext{ from not producing} & \pi(q) < \pi ext{ from not producing} \ & \pi(q) < -f \ & pq - VC(q) - f < -f \ & pq - VC(q) < 0 \ & pq < VC(q) \end{aligned}$

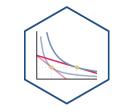


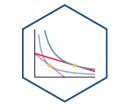
• A firm should choose to produce **no output** (q = 0) only when:

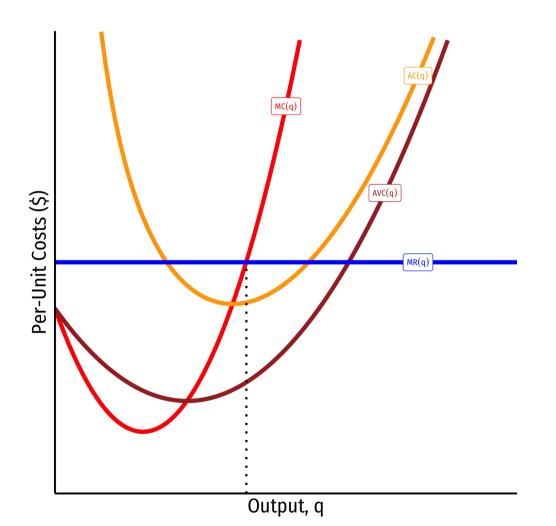
 $egin{aligned} &\pi ext{ from not producing} \ &\pi(q) < -f \ &pq - VC(q) - f < -f \ &pq - VC(q) < 0 \ &pq < VC(q) \ &pq < VC(q) \ &pq < VC(q) \end{aligned}$

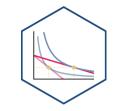
• Shut down price: firm will shut down production in the short run when p < AVC(q)

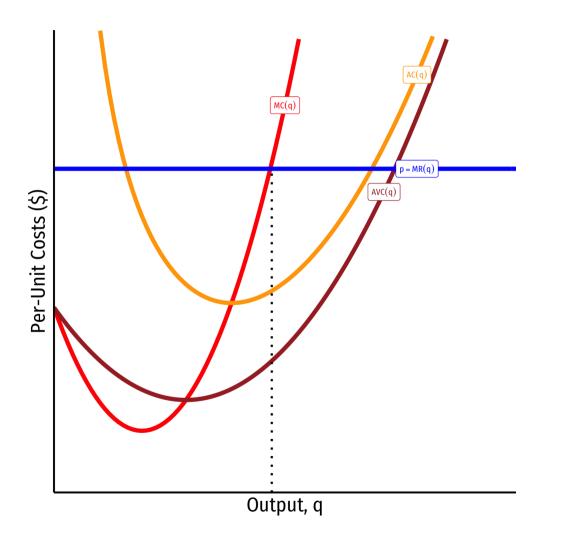


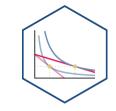


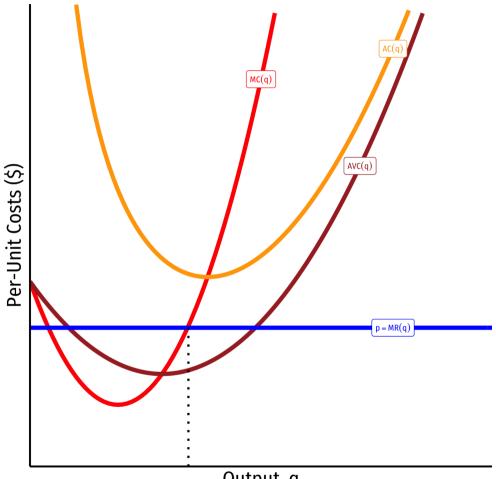




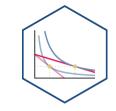


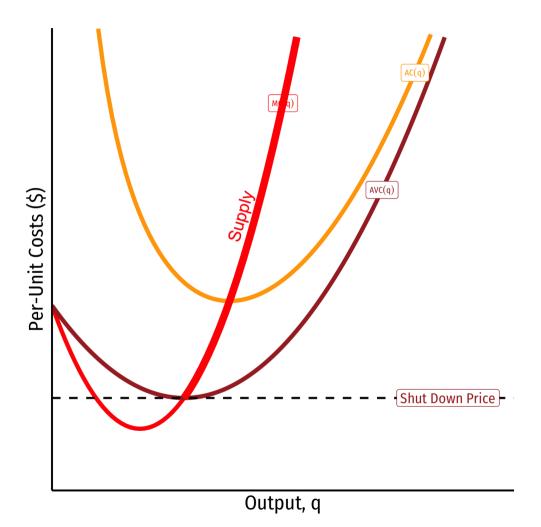


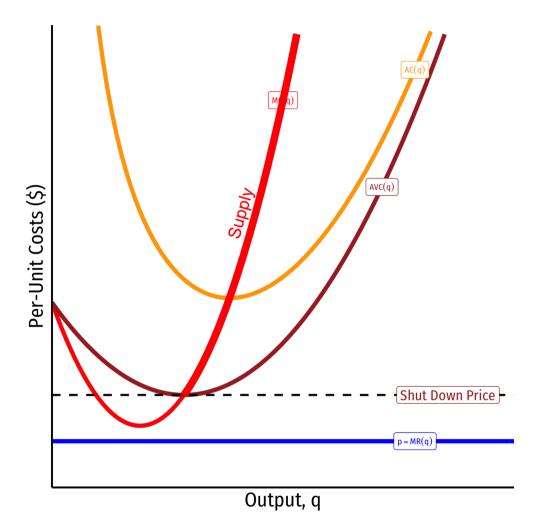


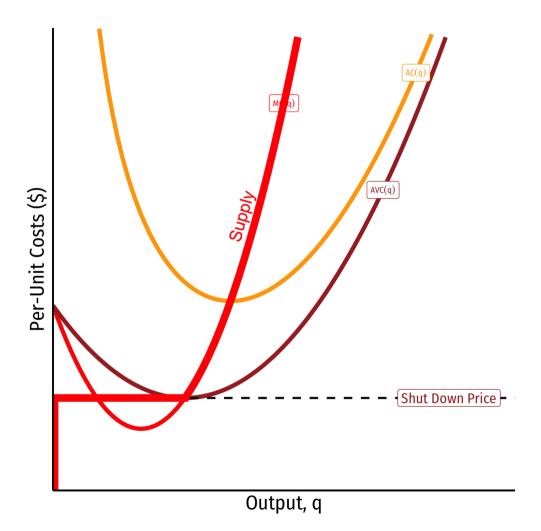


Output, q



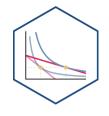






Firm's short run supply curve:

$$egin{cases} p = MC(q) & ext{if} \ p \geq AVC \ q = 0 & ext{If} \ p < AVC \end{cases}$$



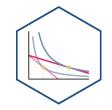


Firm's short run supply curve:

$$egin{cases} p = MC(q) & ext{if} \ p \geq AVC \ q = 0 & ext{If} \ p < AVC \end{cases}$$

Output, q

Summary:



- 1. Choose q^* such that MR(q) = MC(q)
- 2. Profit $\pi = q[p AC(q)]$
- 3. Shut down if p < AVC(q)

Firm's short run (inverse) supply:

$$egin{cases} p = MC(q) & ext{if} \ p \geq AVC \ q = 0 & ext{If} \ p < AVC \end{cases}$$

Choosing the Profit-Maximizing Output $q^{\ast} :$ Example

Example: Bob's barbershop gives haircuts in a very competitive market, where barbers cannot differentiate their haircuts. The current market price of a haircut is \$15. Bob's daily short run costs are given by:

$$C(q)=0.5q^2 \ MC(q)=q$$

1. How many haircuts per day would maximize Bob's profits?

2. How much profit will Bob earn per day?

3. Find Bob's shut down price.