2.3 - Cost Minimization

ECON 306 • Microeconomic Analysis • Fall 2021 Ryan Safner
Assistant Professor of Economics
, safner@hood.edu
O ryansafner/microF21
© microF21.classes.ryansafner.com

Recall: The Firm's Two Problems

$1^{\text {st }}$ Stage: firm's profit maximization problem:

1. Choose: < output >
2. In order to maximize: < profits >

- We'll cover this later...first we'll explore:
$2^{\text {nd }}$ Stage: firm's cost minimization problem:

1. Choose: < inputs >
2. In order to minimize: < cost >
3. Subject to: < producing the optimal output >

- Minimizing costs \Longleftrightarrow maximizing profits

Solving the Cost Minimization Problem

The Firm's Cost Minimization Problem

- The firm's cost minimization problem is:

1. Choose: < inputs: $l, k>$
2. In order to maximize: < total cost:
$w l+r k>$
3. Subject to: < producing the optimal output: $q^{*}=f(l, k)>$

The Cost Minimization Problem: Tools

- Our tools for firm's input choices:
- Choice: combination of inputs (l, k)
- Production function/isoquants: firm's technological constraints
- How the firm trades off between inputs

- Isocost line: firm's total cost (for given output and input prices)
- How the market trades off between
inputs

The Cost Minimization Problem: Verbally

- The firms's cost minimization problem:
choose a combination of l and k to minimize total cost that produces the optimal amount of output

The Cost Minimization Problem: Math

$$
\begin{gathered}
\min _{l, k} w l+r k \\
\text { s.t. } q^{*}=f(l, k)
\end{gathered}
$$

- This requires calculus to solve. We will look at graphs instead!

The Firm's Least-Cost Input Combination: Graphically

- Graphical solution: Lowest isocost line tangent to desired isoquant (A)

The Firm's Least-Cost Input Combination: Graphically

- Graphical solution: Lowest isocost line tangent to desired isoquant (A)
- B produces same output as A, but higher cost
- C is same cost as A, but produces less than desired output
- D produces is cheaper, but produces less than desired output

The Firm's Least-Cost Input Combination: Why A?

Isoquant curve slope $=$ Isocost line slope

The Firm's Least-Cost Input Combination: Why A?

Isoquant curve slope $=$ Isocost line slope

$$
\begin{aligned}
M R T S_{l, k} & =\frac{w}{r} \\
\frac{M P_{l}}{M P_{k}} & =\frac{w}{r} \\
0.5 & =0.5
\end{aligned}
$$

- Marginal benefit = Marginal cost
- Firm would exchange at same rate as market
- No other combination of (l,k) exists at current prices \& output that could produce q^{\star} at lower cost!

Two Equivalent Rules

Rule 1

$$
\frac{M P_{l}}{M P_{k}}=\frac{w}{r}
$$

- Easier for calculation (slopes)

Two Equivalent Rules

Rule 1

$$
\frac{M P_{l}}{M P_{k}}=\frac{w}{r}
$$

- Easier for calculation (slopes)

Rule 2

$$
\frac{M P_{l}}{w}=\frac{M P_{k}}{r}
$$

- Easier for intuition (next slide)

The Equimarginal Rule Again I

$$
\frac{M P_{l}}{w}=\frac{M P_{k}}{r}=\cdots=\frac{M P_{n}}{p_{n}}
$$

- Equimarginal Rule: the cost of production is minimized where the marginal product per dollar spent is equalized across all n possible inputs
- Firm will always choose an option that gives higher marginal product (e.g. if $M P_{l}>M P_{k}$)
- But each option has a different cost, so we weight each option by its cost, hence $\frac{M P_{n}}{p_{n}}$

The Equimarginal Rule Again II

- Any optimum in economics: no better alternatives exist under current constraints
- No possible change in your inputs to produce q^{*} that would lower cost

The Firm's Least-Cost Input Combination: Example

Example:

Your firm can use labor l and capital k to produce output according to the production function:

$$
q=2 l k
$$

The marginal products are:

$$
\begin{aligned}
& M P_{l}=2 k \\
& M P_{k}=2 l
\end{aligned}
$$

You want to produce 100 units, the price of labor is $\$ 10$, and the price of capital is $\$ 5$.

1. What is the least-cost combination of labor and capital that produces 100 units of output?
2. How much does this combination cost?

Returns to Scale

Returns to Scale

- The returns to scale of production: change in output when all inputs are increased at the same rate (scale)

Scale Up

HसНस्स्स
■

Returns to Scale

－The returns to scale of production：change in output when all inputs are increased at the same rate（scale）
－Constant returns to scale：output increases at same
proportionate rate to inputs change
－e．g．double all inputs，output doubles

Scale Up

HEHEPHEH
■ пппп！
世㬰世世 \＃

Returns to Scale

- The returns to scale of production: change in output when all inputs are increased at the same rate (scale)
- Constant returns to scale: output increases at same proportionate rate to inputs change
- e.g. double all inputs, output doubles
- Increasing returns to scale: output increases more than proportionately to inputs change
- e.g. double all inputs, output more than doubles

Scale Up

㬰㬰

Returns to Scale

－The returns to scale of production：change in output when all inputs are increased at the same rate（scale）
－Constant returns to scale：output increases at same proportionate rate to inputs change
－e．g．double all inputs，output doubles
－Increasing returns to scale：output increases more than proportionately to inputs change
－e．g．double all inputs，output more than doubles
－Decreasing returns to scale：output increases less than proportionately to inputs change
－e．g．double all inputs，output less than doubles

Scale Up

Returns to Scale: Example

Example: Does each of the following production functions exhibit constant returns to scale, increasing returns to scale, or decreasing returns to scale?

1. $q=4 l+2 k$
2. $q=2 l k$
3. $q=2 l^{0.3} k^{0.3}$

Returns to Scale：Cobb－Douglas

－One reason Cobb－Douglas functions are great： easy to determine returns to scale：

$$
q=A k^{\alpha} l^{\beta}
$$

Scale Up

－

果果果㬰
＂
电果电
－$\alpha+\beta=1$ ：constant returns to scale
－$\alpha+\beta>1$ ：increasing returns to scale
－$\alpha+\beta<1$ ：decreasing returns to scale
－Note this trick only works for Cobb－Douglas functions！

Cobb－Douglas：Constant Returns Case

－In the constant returns to scale case（most common），Cobb－Douglas is often written as：

$$
q=A k^{\alpha} l^{1-\alpha}
$$

Scale Up

电果电
－α is the output elasticity of capital
－A 1\％increase in k leads to an $\alpha \%$ increase in q
－ $1-\alpha$ is the output elasticity of labor
－A 1% increase in l leads to a $(1-\alpha) \%$ increase in q

Output-Expansion Paths \& Cost Curves

Goolsbee et. al (2011: 246)

- Output Expansion Path: curve illustrating the changes in the optimal mix of inputs and the total cost to produce an increasing amount of output
- Total Cost curve: curve showing the total cost of producing different amounts of output (next class)
- See next class' notes page to see how we go from our least-cost combinations over a range of outputs to derive a total cost function

